IPv6 and Internet2

Bill Cerveny
Network Services, Internet2

USDA IT Summit 17 Nov 2005

Contents

- Background on Internet2 and Abilene
- IPv6 in Internet2
- Deploying IPv6

Background on Internet2 and Abilene

What's Internet2?

- We provide our members with an "Advanced Networking Environment" to use for research and education
 - Abilene backbone
 - Network research
 - IPv6, Multicast
 - End-to-End Performance Initiative
 - Applications and Services e.g. Commons and InCommon
 - Middleware
 - Security

Internet2 Membership

- University
 - United States institutions of higher education
- Corporate
 - For-profit companies
- Affiliate
 - Non-profit and other research or education organizations
- Association
 - Non-profit, higher education associations with national or international scope

http://members.internet2.edu/

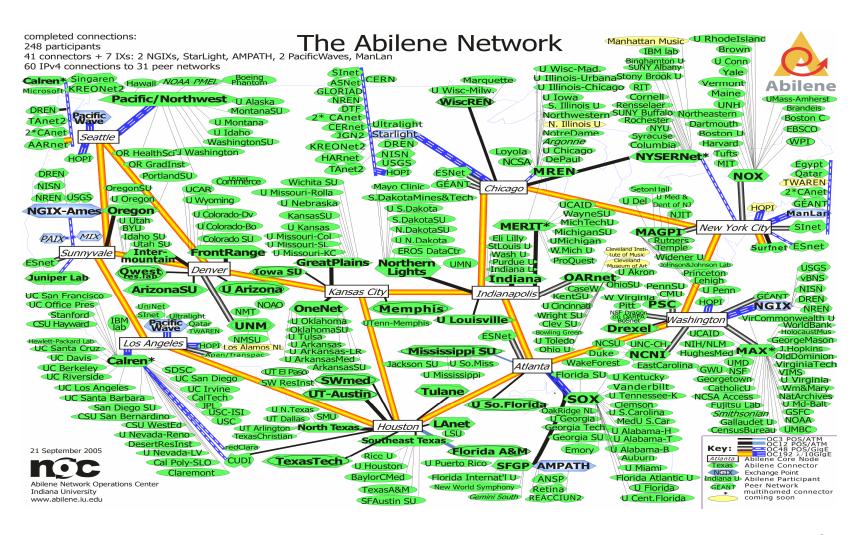
Abilene Network

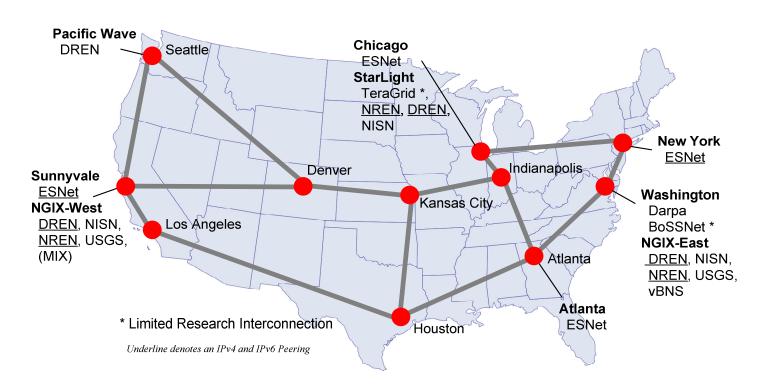
Abilene is a high-performance backbone network that enables the development of advanced Internet applications and the deployment of leading-edge network services to Internet2 universities and research labs across the country.

Abilene Partners

- Indiana University
- Juniper Networks
- Nortel Networks
- Qwest Communications
- North Carolina, Ohio, San Diego and Texas ITECs

Abilene Network Topology





Abilene Topology Map

Abilene Federal/Research Peering

Abilene Federal/Research Network Peers

Abilene International Peering

Abilene International Network Peers

*via GEANT: ACOnet, ARNES, BELNET, CARNet, CERN, CESNET, CYNET, EENet, Forskningsnettet, Funet, G-WIN, GARR, GRNET, HEAnet, HUNGARNET, IUCC, JANET, LANET, LITNET, Univ. Malta, POL34, RBnet, RCTS2, RedIRIS, Renater, RESTENA, REUNA2, Rhnet, RNP2, RoEduNet, SANET, SUNET, SURFnet, SWITCH, ULAKBYM, UNINETT

†via APAN/TransPAC2: WIDE/JGN, IMnet, CERNet/CSTnet/NSFCNET, KOREN/KREONET2, PREGINET, SingAREN, TANET2, ThaiSARN, WIDE (v6)

** via GLORIAD: CSTNET, Rbnet

Underline denotes IPv4/IPv6 Peering

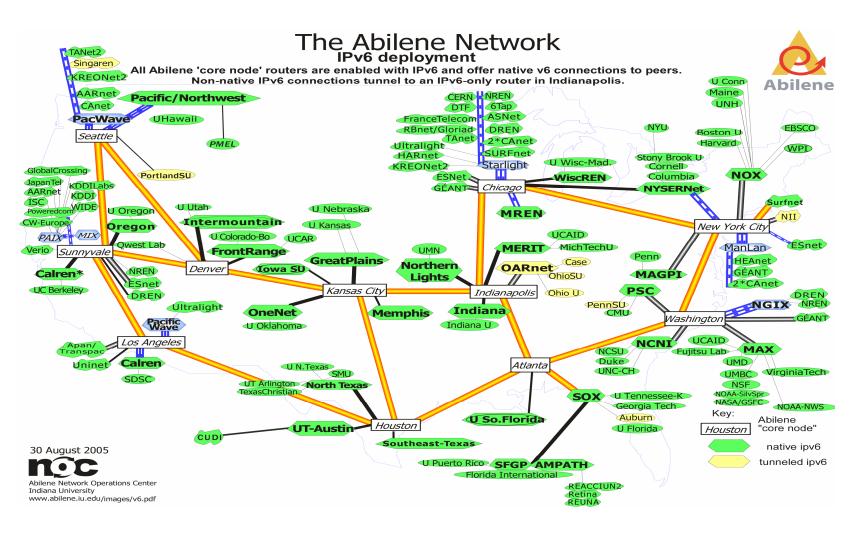
Italics indicates IPv6-only experimental non-

production commercial peering

Bold italics indicates IPv6-only network peering

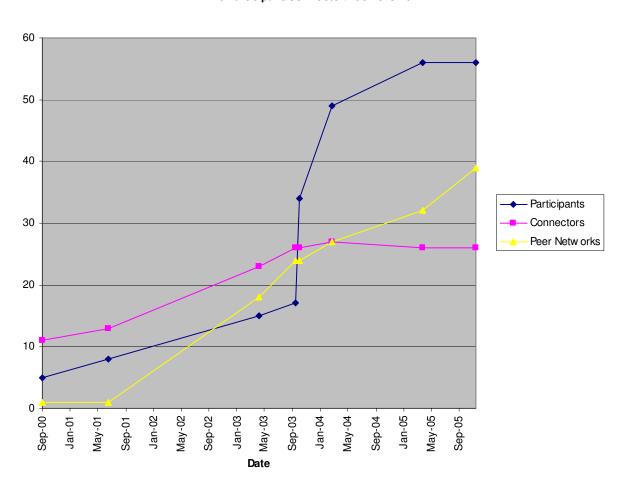
REACCIUN-2

IPv6 in Internet2


Abilene IPv6 History

- Substantial input from the Internet2
 IPv6 working group
- Tunneled IPv6 network deployed 2000 across IPv4-based network
- Native, dual stack structure implemented at end of 2001
- Native dual stack was default for the upgrade
- Early testing

IPv6 Participants and Connectors


- Participants: 56
- Connectors: 26
- Peers: 39
 - 3 Federal
 - 27 International
 - 9 Experimental/Non-production

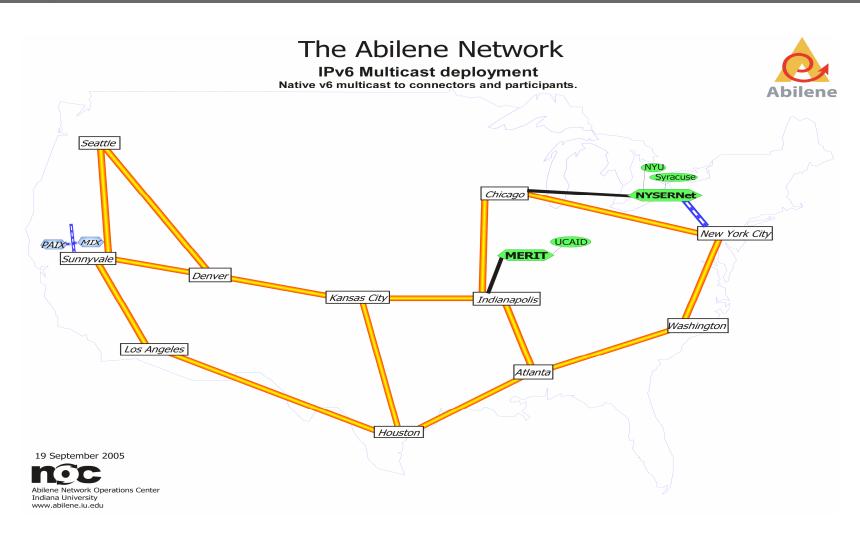
IPv6 Deployment Map

Abilene IPv6 Growth

IPv6 Participant/Connector/Peer Growth

Abilene IPv6 Peering

- •IPv6 and IP Multicast Peering Policy open peering policy, with transit if desired different from IPv4
- Peering Methods
 - Exchange point
 - Direct peering to backbone router
 - Peering through GigaPoPs, through tunnels or BGP multihop
- Connectivity to Exchange Points

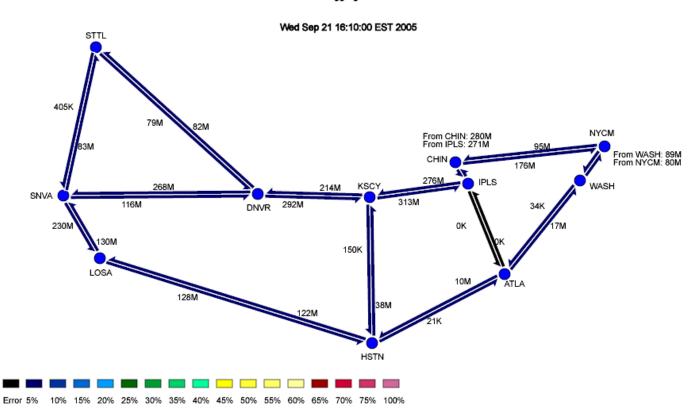

Additional IPv6 Deployment

- Backbone unicast and multicast enabled
 - Routing BGP and IS-IS
- •6 to 4 tunnel relays:
 - Indiana University
 - Pittsburgh Supercomputer Center

IPv6 Multicast – Newest IPv6 Breakthrough

- Demonstrated native IPv6 multicast across Abilene in September 2005
 - 5 sites participated: Internet2-Ann Arbor office, NYSERnet-Syracuse, NYSERnet-Manhattan, NYU, Fall 2005 Internet2 member meeting site in Philadelphia
- With IPv6 Multicast, embedded-RP replaces MSDP

IPv6 Multicast Deployment Map



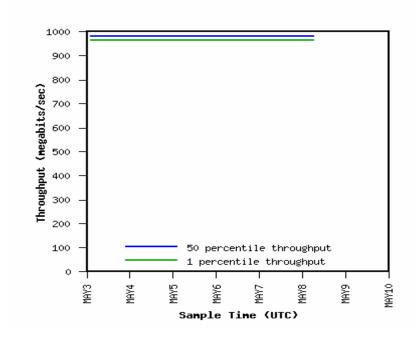
IPv6 Traffic Map

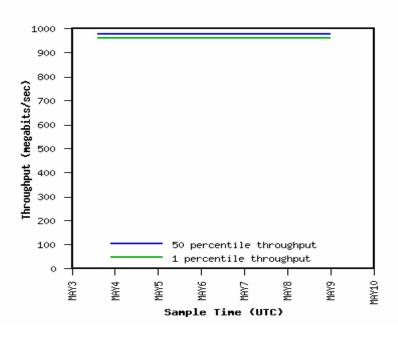
Abilene IPv6 Backbone Traffic Map

IPv6-Aggregate IPv6-TCP IPv6-UDP IPv6-Multicast IPv6-Other

Abilene IPv6 Aggregate Backbone Traffic

Abilene IPv4/IPv6 Measurement


- Backbone measurements via IPv4 and IPv6:
 - BWCTL Bandwidth Control
 - OWAMP One Way Active Measurement Protocol
- Measurements to and from Abilene backbone
 - http://e2epi.internet2.edu/pipes/ami/pmp-info.html
- Difference between IPv6 and IPv4 performance on Abilene is indistinguishable


IPv4/IPv6 Comparative Performance

Tue May 3 16:25:40 UTC 2005 --- Tue May 10 16:25:40 UTC 2005

Select Timeframe

BWCTL TCP Status BWCTL TCP Status Map
BWCTL Worst TCP Ten
BWCTL UDP Status BWCTL UDP Status Map
OWAMP Status OWAMP Status Map
OWAMP Worst Ten

Internet2 Member IPv6 Activities

- North Carolina State University and Centaur Labs -- IPv6 streaming audio feeds from radio stations WCPE and WZYC
- Abilene IPv6-enabled hosts
 - http://ipv6.internet2.edu/ipv6hosts.shtml

Applications

- VRVS (CaIREN)

 IPv6 support in development
- Internet2 Detective
- DVTS (Wide)
- ConferenceXP (Microsoft Research)

Support for IPv6

- Tutorials
 - 21 "hands-on" workshops since 2001
 - Focused primarily on IPv6 router configuration
 - Slides are available
 - http://ipv6.internet2.edu/presentations/

Deploying IPv6

Wide Area Network Issues

- Router and switch capabilities
 - Performance
 - CPU hits from IPv6 traffic?
 - Measurement
 - Security tools
- Addressing
 - Provider-aggragatable or Provider-independent?
- Multihoming
 - Still a work in progress ...

Participant/campus Issues

- Applications
- LAN Switch Support
- Wireless Support
- Management
- Security
- Multihoming

Campus deployment Issues (con't)

A "last mile" problem persists as it relates to IPv6. Theories:

- Hardware doesn't support IPv6
- Application server time-outs
- Difficulty convincing administrators of value
- Ensuring security isn't being compromised

IPv6 Security

- Issues:
 - Extension headers
 - 6to4 relays
 - Missing tools or limited tool support for IPv6
 - Firewalls

Planning for an IPv6 Future

- Mandate and purchase hardware which does or will fully support IPv6
 - It is one thing to claim IPv6 compliance and quite another to claim sufficient performance with IPv6
 - IPv6 support is becoming more common, but vendors must still be asked

Planning for an IPv6 Future

- Use IPv6 as a differentiator in purchasing decisions
- Even without immediate plans to deploy IPv6, purchasing hardware which will support it now is essential for reducing future deployment expenses/headaches

Questions for Vendors

IPv6 support for:

- Performance?
- Measurement?
- Management?
- Security?
- Capabilities?

Outlook on IPv6

- Good news and bad news
- Overall, IPv6 is pretty easy. There will be subtle problems that occur with any new technology:
 - New code, new bugs
 - Unforeseen security issues
 - Inexperience

For Further Information ...

References

- http://www.internet2.edu
- http://abilene.internet2.edu
- http://www.abilene.iu.edu
- http://ipv6.internet2.edu

Thanks!

www.internet2.edu